
 

1.1.QSAR identifier (title):

HL: Henry’s Law constant 

   prediction from OPERA (OPEn saR App) models.

1.2.Other related models:

No related models

1.3.Software coding the model:

OPERA V1.02

OPERA (OPEn (quantitative) structure-activity Relationship Application) is a standalone free and

open source command line application. It provides a suite of QSAR models to predict

physicochemical properties and environmental fate of organic chemicals based on PaDEL

descriptors. It is available for download in Matlab, C and C++ languages from github under MIT

license.

Kamel Mansouri (mansouri.kamel@epa.gov; mansourikamel@gmail.com);

https://github.com/kmansouri/OPERA.git

 

 

PaDEL descriptors V2.21

Open source software to calculate molecular descriptors and fingerprints.

Chun Wei Yap (phayapc@nus.edu.sg)

http://padel.nus.edu.sg/software/padeldescriptor

 

 

MATLAB

MATrix LABoratory is a multi-paradigm numerical computing environment and fourth-generation

programming language

http://www.mathworks.com/company/aboutus/contact_us/?s_tid=gn_cntus

http://www.mathworks.com/products/matlab/

 

2.1.Date of QMRF:

1 November 2016

2.2.QMRF author(s) and contact details:

[1]Kamel Mansouri, ORISE research fellow at National Center for Computational Toxicology

(NCCT), U.S. Environmental Protection Agency, mansourikamel@gmail.com;

mansouri.kamel@epa.gov

[2]Antony Williams, National Center for Computational Toxicology (NCCT), U.S. Environmental

Protection Agency, Williams.Antony@epa.gov 

2.3.Date of QMRF update(s):

2.4.QMRF update(s):

QMRF identifier (JRC Inventory):To be entered by JRC
QMRF Title:HL: Henry’s Law constant
    prediction from OPERA (OPEn saR App) models.
Printing Date:Dec 5, 2016

1.QSAR identifier

2.General information



2.5.Model developer(s) and contact details:

Kamel Mansouri, ORISE research fellow at National Center for Computational Toxicology (NCCT),

U.S. Environmental Protection Agency, mansourikamel@gmail.com; mansouri.kamel@epa.gov 

2.6.Date of model development and/or publication:

2016

2.7.Reference(s) to main scientific papers and/or software package:

[1]The importance of data curation on QSAR Modeling: PHYSPROP open data as a case study.

Kamel Mansouri, Christopher Grulke Ann Richard Richard Judson Antony Williams. Presented at

QSAR2016 14 June 2016, Miami, FL http://www.qsar2016.com/program

[2]OPERA: A QSAR tool for physicochemical properties and environmental fate predictions. Kamel

Mansouri, Antony Williams, Chris Grulke, Ann Richard, Richard Judson (in Preparation)

[3]PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints.

Chun Wei Yap. (2011). J. Comput. Chem., 32: 1466–1474. doi:10.1002/jcc.21707

http://onlinelibrary.wiley.com/doi/10.1002/jcc.21707/abstract

[4]A KNIME workflow for chemical structures curation and standardization in QSAR modeling. Kamel

Mansouri, Sherif Farag, Jayaram Kancherla, Regina Politi, Eugene Muratov, Denis Fourches, Ann

Richard, Richard Judson, Alexander Tropsha. (in preparation)

[5]The influence of data curation on QSAR Modeling – examining issues of quality versus quantity of

data (SOT). Williams, A., K. Mansouri, A. Richard, AND C. Grulke. Presented at Society of

Toxicology, New Orleans, LA, March 13 - 17, 2016.

https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=311418

[6]An Online Prediction Platform to Support the Environmental Sciences (American Chemical

Society). Richard, A., C. Grulke, K. Mansouri, R. Judson, AND A. Williams. Presented at ACS Spring

Meeting, San Diego, CA, March 13 - 17, 2016.

https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=311655 

2.8.Availability of information about the model:

Non-proprietary suite of QSAR models freely available as a command

     line standalone application (OPERA: OPEn saR App) from github under MIT

     license: https://github.com/kmansouri/OPERA.git. Its predictions for the

     full DSSTox 720k chemicals are published on the EPA CompTox Chemistry

     Dashboard ( https://comptox.epa.gov/dashboard). Training

     and validation sets are available for visualization on the dashboard and

     as SDF files provided in supporting information Section 9.3 and from the

     p a p e r  [ r e f  1 - 2 ,  S e c t i o n  2 . 7 ] .  (

ftp://newftp.epa.gov/COMPTOX/Sustainable_Chemistry_Data/Chemistry_Dashboard/PHYSPROP_

Analysis)

2.9.Availability of another QMRF for exactly the same model:

Not to date

 

3.1.Species:

Not applicable

3.2.Endpoint:

Physicochemical: Henry’s Law constant 

3.3.Comment on endpoint:

3.Defining the endpoint - OECD Principle 1



Henry’s Law is defined that at a constant temperature, the amount of

   a given gas that dissolves in a given type and volume of liquid is

   directly proportional to the partial pressure of that gas in equilibrium

   with that liquid.

3.4.Endpoint units:

Log atm-m3/mole

3.5.Dependent variable:

LogHL

3.6.Experimental protocol:

The experimental data were downloaded from the EPI Suite data

   webpage (http://esc.syrres.com/interkow/EpiSuiteData.htm).

   These data are from PHYSPROP (The Physical Properties

   Database) which is a collection of a wide variety of sources built by

   Syracuse Research Corporation (SRC). Experimental protocols of the

   different parts of data can be traced back to the original referenced

   literature from the database.

3.7.Endpoint data quality and variability:

The original data collected from the PHYSPROP

     database (1829 chemicals) have undergone a series of processes to curate

     the chemical structures and remove duplicates, obvious outliers and

     erroneous entries. This procedure also included a consistency check to

     ensure only good quality data is used for the development of the QSAR

     model (1758 chemicals).  

Then, QSAR-ready structures were generated by

     standardizing all chemical structures and removing duplicates, inorganic

     and metallo-organic chemicals (1711 chemicals). The descriptions of

     KNIME workflows that were developed for the purpose of the cleaning and

     standardization of the data are available in the papers [ref 1 and ref 4

     Section 2.7].  

The curated outlier-free experimental data (591

     chemicals) was divided into training and validation sets before the

     machine learning and modeling steps.

 

4.1.Type of model:

QSAR model using PaDEL descriptors [ref2 Sect 1.3].

4.2.Explicit algorithm:

Distance weighted k-nearest neighbors (kNN)

This is a refinement of the classical k-NN classification algorithm where the contribution of each of

the k neighbors is weighted according to their distance to the query point, giving greater weight to

closer neighbors.The used distance is the Euclidean distance. kNN is an unambiguous algorithm

that fulfills the transparency requirements of OECD principle 2 with an optimal compromise between

model complexity and performance.

4.3.Descriptors in the model:

[1]nHBDon, Unitless, Hbond donor count: Number of hydrogen bond donors (using CDK

HBondDonorCountDescriptor algorithm).

4.Defining the algorithm - OECD Principle 2



[2]MLFER_S, Unitless, Molecular linear free energy relation: Combined dipolarity/polarizability.

Platts JA, Butina D, Abraham MH, Hersey A. Estimation of molecular free energy relation descriptors

using a group contribution approach. J Chem Inf Comput Sci. 1999;39(5):835-45.

[3]GATS1e, Unitless, Geary autocorrelation - lag 1 / weighted by Sanderson electronegativities.

Todeschini, R. and Consonni, V. (2009). Molecular descriptors for chemoinformatics, (Weinheim:

Wiley VCH) pg 27-37

[4]ndssC, Unitless, Atom type electrotopological state: Count of atom-type E-State: =C<. Hall, L. H.,

and Kier, L. B. (1995). Electrotopological state indices for atom types: A novel combination of

electronic, topological, and valence state information. J Chem Inf Comput Sci 35, 1039-1045; Liu,

R., Sun, H., and So, S. S. (2001). Development of quantitative structure-property relationship

models for early ADME evaluation in drug discovery. 2. Blood-brain barrier penetration. J Chem Inf

Comput Sci 41, 1623-1632.; Gramatica, P., Corradi, M., and Consonni, V. (2000). Modelling and

prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors.

Chemosphere 41, 763-777.

[5]ATS3m, Unitless, Broto-Moreau autocorrelation - lag 3 / weighted by mass. Todeschini, R. and

Consonni, V. (2009). Molecular descriptors for chemoinformatics, (Weinheim: Wiley VCH) pg 27-37

[6]nHBint6, Unitless, Atom type electrotopological state: Count of E-State descriptors of strength for

potential Hydrogen Bonds of path length 6. Hall, L. H., and Kier, L. B. (1995). Electrotopological

state indices for atom types: A novel combination of electronic, topological, and valence state

information. J Chem Inf Comput Sci 35, 1039-1045; Liu, R., Sun, H., and So, S. S. (2001).

Development of quantitative structure-property relationship models for early ADME evaluation in

drug discovery. 2. Blood-brain barrier penetration. J Chem Inf Comput Sci 41, 1623-1632.;

Gramatica, P., Corradi, M., and Consonni, V. (2000). Modelling and prediction of soil sorption

coefficients of non-ionic organic pesticides by molecular descriptors. Chemosphere 41, 763-777.

[7]nHBAcc2, Unitless, Number of hydrogen bond acceptors (any oxygen; any nitrogen where the

formal charge of the nitrogen is non-positive (i.e. formal charge <= 0) except a non-aromatic nitrogen

that is adjacent to an oxygen and aromatic ring, or an aromatic nitrogen with a hydrogen atom in a

ring, or an aromatic nitrogen with 3 neighouring atoms in a ring, or a nitrogen with total bond order

>=4; any fluorine).

[8]AATSC0i, Unitless, Average centered Broto-Moreau autocorrelation - lag 0 / weighted by first

ionization potential. Todeschini, R. and Consonni, V. (2009). Molecular descriptors for

chemoinformatics, (Weinheim: Wiley VCH) pg 27-37

[9]SpAD_Dzm, Unitless, Barysz matrix: Spectral absolute deviation from Barysz matrix / weighted by

mass. Todeschini, R. and Consonni, V. (2009). Molecular descriptors for chemoinformatics,

(Weinheim: Wiley VCH) pg 714-726 

4.4.Descriptor selection:

PaDEL software was used to calculate 1440

     molecular descriptors. A first filter was applied in order to remove

     descriptors with missing values, constant and near constant (standard

     deviation of 0.25 as a threshold) and highly correlated descriptors (96%

     as a threshold). The remaining 765 descriptors were used in a feature

     selection procedure to select a minimum number of variables encoding the

     most relevant structural information to the modeled endpoint. This step

     consisted of coupling Genetic Algorithms (GA) with the weighted kNN

     algorithm and was applied in 5 fold cross validation on the training set (441

     chemicals). This procedure was run for 200 consecutive independent runs



     maximizing Q 2 in cross-validation and minimizing the number

     of descriptors. The number of k neighbors is optimized within the range

     of 3 to 7. The descriptors were then ranked based on their frequency of

     selection during the GA runs. The best model showed an optimal

     compromise between the simplicity (minimum number of descriptors) and

     performance (Q2 in cross-validation) to ensure transparency

     and facilitate the mechanistic interpretation as required by OECD

     principles 2 and 5. More details in paper [ref2 Section 2.7].

4.5.Algorithm and descriptor generation:

PaDEL descriptors were calculated based on

     two-dimensional (2D) chemical structures generated by the Indigo

     cheminformatics suite of tools implemented in KNIME. 2D descriptors were

     selected over 3D to avoid complicated and usually irreproducible

     geometrical optimizations. The calculated descriptors fall into

     different groups such as constitutional indices, ring descriptors,

     topological indices, 2D matrix based descriptors, functional group

     counts and atom counts. Details and references provided Section 4.3.

4.6.Software name and version for descriptor generation:

PaDEL-Descriptors V2.21

An open source software to calculate molecular descriptors and fingerprints.

Chun Wei Yap (phayapc@nus.edu.sg)

http://padel.nus.edu.sg/software/padeldescriptor

4.7.Chemicals/Descriptors ratio:

441 chemicals (trainingset)/9 descriptors= 49

 

5.1.Description of the applicability domain of the model:

The model is applicable to heterogeneous organic chemicals. In the 

implementation of the model several pieces of information are given to 

help the user in evaluating the reliability of a prediction. The

chemical structure is first assessed to see if it is falling within the 

Applicability Domain of the model or not. Then the accuracy of the

predicted value is reported based on the similarity of the query

chemical to its neighboring chemicals in the training set of the model. 

This fullfills the requirements of the 3rd OECD principle by defining

     the limitations in terms of the types of chemical structures,

     physicochemical properties and mechanisms of action for which the model

     can generate reliable predictions.

5.2.Method used to assess the applicability domain:

The applicability domain of the model is assessed in two independent

levels using two different distance-based methods. First, a global

applicability domain is determined by means of the leverage approach

that checks whether the query structure falls within the

multidimensional chemical space of the whole training set. 

The leverage of a query chemical is proportional to its Mahalanobis

distance measure from the centroid of the training set. The leverages of

5.Defining the applicability domain - OECD Principle 3



a given dataset are obtained from the diagonal values of the hat matrix.

This approach is associated with a threshold leverage that corresponds

to 3*p/n where p is the number of model variables while n is the number

of training compounds. A query chemical with leverage higher than the

threshold is considered outside the AD and can be associated with

unreliable prediction. 

The leverage approach has specific limitations, in particular with

     respects to gaps within the descriptor space of the model or at the

     boundaries of the training set. To obviate such limitations, a second

     tier of applicability domain assessement was added. This comprised a

     local approach which only investigated the vicinity of the query

     chemical. This local approach provides a continuous index ranging from 0

     to 1 which is different from the first approach which only provides

     Boolean answers (yes/no). This local AD-index is relative to the

     similarity of the query chemical to its 5 nearest neighbors in the p

     dimensional space of the model. The higher this index, the more the

     prediction is likely to be reliable.

5.3.Software name and version for applicability domain assessment:

Implemented in OPERA V1.02

An implementation of a local similarity index and the leverage approach based on the work of

Sahigara, F.; Mansouri, K.; Ballabio, D.; Mauri, A.; Consonni, V.; Todeschini, R. Comparison of

Different Approaches to Define the Applicability Domain of QSAR Models. Molecules 2012, 17,

4791-4810.

Kamel Mansouri (mansouri.kamel@epa.gov; mansourikamel@gmail.com);

https://github.com/kmansouri/OPERA.git

5.4.Limits of applicability:

These two AD methods described in Section 5.2 are complementary

     and can be interpreted in the following way:  

- If a chemical is considered outside the global AD with a low

     local AD-index, the prediction can be unreliable  

- If a chemical is considered outside the global AD but the local

     AD-index is average or relatively high, this means the query chemical is

     on the boundaries of the training set but has quite similar neighbors.

     The prediction can be trusted.  

- If a chemical is considered inside the global AD but the local

     AD-index is average or relatively low, this means the query chemical

     fell in a "gap" of the chemical space of the model but still within the

     boudaries of the training set and surrounded with training chemicals.

     The prediction should be considered with caution.  

- If a chemical is considered inside the global AD with a high

     local AD-index, the prediction should be considered reliable.  

Even though the applicability domain is necessary to set the

     limits of the interpolation space of the model, it doesn't necessarily

     inform about the quality of the prediction especially in the empty

     spaces and around the edges of the descriptor space. In order to

     overcome this limitation and help the user decide about the reliability



     of a prediction, we added a confidence level index ranging from 0 to 1

     relative to the accuracy of prediction of the 5 nearest neighbors to the

     query chemical. The higher this index, the more the prediction is likely

     to be reliable.

 

6.1.Availability of the training set:

Yes

6.2.Available information for the training set:

Internal ID; CAS checksum; name validity; preferred name; IUPAC name; Original SMILES; QSAR-

ready canonical smiles; InChI; Salt information; DSSTox GSID; Experimental reference; Consistency

flag

CAS RN: Yes

Chemical Name: Yes

Smiles: Yes

Formula: No

INChI: Yes

MOL file: Yes

6.3.Data for each descriptor variable for the training set:

All

6.4.Data for the dependent variable for the training set:

All

6.5.Other information about the training set:

The training set consists of 591 chemicals. The

     structures are randomly selected to represent 75% of the available data

     keeping a similar normal distrubution of HL vlaues in both training and

     test sets using the Venetian blinds method. The values are ranging from

     ~-13 to ~1.5. A plot of the distribution of HL values is provided in the

     supporting information Section 9.3.

6.6.Pre-processing of data before modelling:

No preprocessing of the values.

6.7.Statistics for goodness-of-fit:

Performance in training: 

R2=0.84 

RMSE=1.91

6.8.Robustness - Statistics obtained by leave-one-out cross-validation:

6.9.Robustness - Statistics obtained by leave-many-out cross-validation:

Performance in 5-fold cross-validation:

 

Q2=0.84

 

RMSE=1.96

 

A plot of the experimental versus predicted values

     for the training set is provided in supporting information Section 9.3.

6.Internal validation - OECD Principle 4



6.10.Robustness - Statistics obtained by Y-scrambling:

6.11.Robustness - Statistics obtained by bootstrap:

6.12.Robustness - Statistics obtained by other methods:
 

7.1.Availability of the external validation set:

Yes

7.2.Available information for the external validation set:

Internal ID; CAS checksum; name validity; preferred name; IUPAC name; Original SMILES; QSAR-

ready canonical smiles; InChI; Salt information; DSSTox GSID; Experimental reference; Consistency

flag

CAS RN: Yes

Chemical Name: Yes

Smiles: Yes

Formula: No

INChI: Yes

MOL file: Yes

7.3.Data for each descriptor variable for the external validation set:

All

7.4.Data for the dependent variable for the external validation set:

All

7.5.Other information about the external validation set:

The validation set consists of 150 chemicals. 

The values are ranging from ~-10 to ~0.5.

7.6.Experimental design of test set:

The structures are randomly selected to represent 25% of the available

data keeping a similar normal distrubution of HL vlaues in both training

and test sets using the Venetian blinds method. A plot of the

distribution of HL values is provided in the supporting informationSection

     9.3.

7.7.Predictivity - Statistics obtained by external validation:

Performance in test: 

R2=0.85 

RMSE=1.82

7.8.Predictivity - Assessment of the external validation set:

The validation set consisting of 150 chemicals

     which is equivalent to a third (1/3) of the training set is sufficient

     for the evaluation of the predictivity of the model and a good

     representation of the chemical space as shown in the multi-dimensional

     scaling plot provided in supporting information Section 9.3. A plot of

     the experimental versus predicted values for the validation set is

     provided in supporting information Section 9.3.

7.9.Comments on the external validation of the model:

The choice of proportions between the training set and the validation

set as well as the splitting method helped in accurately evaluating the

model and covering most of the training set chemical space. This goal

7.External validation - OECD Principle 4



was accomplished without the need to do a structural sampling that

usually shows over-optimistic evaluation of the predictivity or a

complete random selection that risks biasing the evaluation towards a

certain region of the chemical space.

 

8.1.Mechanistic basis of the model:

The model descriptors were selected statistically

     but they can also be mechanistically interpreted.

 

 

Henry’s Law definition: the mass of gas dissolved by

   a given volume of solvent is proportional to the pressure of the gas with

   which it is in equilibrium. So Henry's law constant is a measure of

   the relative affinity of a compound for the vapor phase and water. H depends

   mainly on interactions in the aqueous phase because in the gas phase,

   behavior is close to ideal. Interactions with water molecules is a

   constitutive property of the molecule and can involve hydrogen bonding and

   dipole-dipole, dipole-induced dipole, iondipole, and ion-induced dipole

   interactions, which are all exoergic. The molecular descriptors slected in

   our model include hydrogen donor and acceptor counts (nHBDon, nHBint6 and

   nHBAcc2) as well as decriptors encoding informatio about the electronic

   profile of the molecule (AATSC0i, MLFER_S, GATS1e and ndssC).  

 

 

Dunnivant and Elzerman [ref 1,2 Section 9.2]

   indicated that molecular size and shape are major factors controlling the

   magnitude of  H. Molecular

   size plays a significant role here, since the larger the solute molecule,

   the larger the cavity that has to be created in water (by the breaking of

   hydrogen bonds) to accommodate it. Dearden and Schuurmann stated that

   increasing molecular size when considering both (quantum chemically

   calculated) electrostatics and surface area as a composite descriptor for

   cavitation and dispersion energies, increases Henry's law constant [ref 3

   Section 9.2]. In our model, molecular size is encode in 2 descriptors 

   (ATS3m and ApAD_Dzm).

8.2.A priori or a posteriori mechanistic interpretation:

A posteriori mechanistic interpretation.

8.3.Other information about the mechanistic interpretation:

For more details and full reference, see

     references in Section 4.3 and Section 9.2.

 

9.1.Comments:

This QSAR model for HL prediction is part of the

     NCCT_Models Suite that is a free and open-source standalone application

8.Providing a mechanistic interpretation - OECD Principle 5

9.Miscellaneous information



     for the prediction of physicochemical properties and environmental fate

     of chemicals. This application is available in the Supporting

     information Section 9.3 of this report and in the paper ref 2 Section 2.7.

     The detailed results of this suite of models applied on more than 700k

     DSSTox  chem ica l s  a re  ava i l ab l e  on  t he  iCSS  chem is t r y  dashboa rd

(h t t ps : / / comp tox .epa .gov /dashboa rd ) .

 

This current version of the model is mainly based

     on curated and standardized data collected from the Physprop database.

     All NCCT_Models are designed to fulfil the requirement of the 5 OECD

     principles to ensure transparency and reproducibility of the results. In

     order to predict new chemicals, the models only require 2D chemical

     structures that are used to calculate molecular descriptors by PaDEL

     2.21 software. Then a simple weighted kNN algorithm is used to make the

     prediction based on the observed values of the k closest molecules. All

     models showed high robustness and statistics stability between training,

     5-fold cross-validation and the external validation set.

 

Considering the full applicability domain of the 591

     chemicals with available data and the same models parameters described

     earlier, the calibration statistics would be an R 2 of 0.85 and

     an RMSE of 1.83.

9.2.Bibliography:

[1]Dunnivant FM, Elzerman AW. 1988. Aqueous solubility and Henry's law constant data for PCB

congeners for evaluation of quantitative structure-property relationships (QSPRs). Chemosphere 17:

525–541.

[2]Dunnivant FM, Elzerman AW, Jurs PC, Hasan MN. 1992. Quantitative structure-property

relationships for aqueous solubilities and Henry's law constants of polychlorinated biphenyls.

Environ Sci Technol 26: 1567–1573.

[3]John C. Dearden, Gerrit Schüürmann. Quantitative structure-property relationships for predicting

henry's law constant from molecular structure. .2003. 22, 8, 1755–1770 

9.3.Supporting information:

Training set(s)

Test set(s)

Supporting information

QSAR_ready_Curated_3_4STAR_HL.sdf file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-
Q\kmansour\Net
MyDocuments\work\OPERA\SDF\HL\QSAR_rea
dy_Curated_3_4STAR_HL.sdf

QSAR_ready_Curated_3_4STAR_HL.sdf file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-
Q\kmansour\Net
MyDocuments\work\OPERA\SDF\HL\QSAR_rea
dy_Curated_3_4STAR_HL.sdf

HL.tif file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-
Q\kmansour\Net
MyDocuments\work\OPERA\figs\HL.tif

file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-Q\kmansour\Net MyDocuments\work\OPERA\SDF\HL\QSAR_ready_Curated_3_4STAR_HL.sdf
file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-Q\kmansour\Net MyDocuments\work\OPERA\SDF\HL\QSAR_ready_Curated_3_4STAR_HL.sdf
file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-Q\kmansour\Net MyDocuments\work\OPERA\SDF\HL\QSAR_ready_Curated_3_4STAR_HL.sdf
file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-Q\kmansour\Net MyDocuments\work\OPERA\SDF\HL\QSAR_ready_Curated_3_4STAR_HL.sdf
file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-Q\kmansour\Net MyDocuments\work\OPERA\SDF\HL\QSAR_ready_Curated_3_4STAR_HL.sdf
file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-Q\kmansour\Net MyDocuments\work\OPERA\SDF\HL\QSAR_ready_Curated_3_4STAR_HL.sdf
file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-Q\kmansour\Net MyDocuments\work\OPERA\SDF\HL\QSAR_ready_Curated_3_4STAR_HL.sdf
file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-Q\kmansour\Net MyDocuments\work\OPERA\SDF\HL\QSAR_ready_Curated_3_4STAR_HL.sdf
file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-Q\kmansour\Net MyDocuments\work\OPERA\figs\HL.tif
file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-Q\kmansour\Net MyDocuments\work\OPERA\figs\HL.tif
file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-Q\kmansour\Net MyDocuments\work\OPERA\figs\HL.tif


 

10.1.QMRF number:

To be entered by JRC

10.2.Publication date:

To be entered by JRC

10.3.Keywords:

To be entered by JRC

10.4.Comments:

To be entered by JRC

HL_hist.tif file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-
Q\kmansour\Net
MyDocuments\work\OPERA\figs\HL_hist.tif

10.Summary (JRC QSAR Model Database)

file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-Q\kmansour\Net MyDocuments\work\OPERA\figs\HL_hist.tif
file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-Q\kmansour\Net MyDocuments\work\OPERA\figs\HL_hist.tif
file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-Q\kmansour\Net MyDocuments\work\OPERA\figs\HL_hist.tif
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